
Java DataSet

Markus Lorez
University of Applied Sciences, Rapperswil

Oberseestrasse 10
CH – 8640 Rapperswil

Markus.Lorez@hsr.ch

Alain Schneble
University of Applied Sciences, Rapperswil

Oberseestrasse 10
CH – 8640 Rapperswil

a.s@realize.ch

ABSTRACT

Today’s applications are required to distribute data beyond a company’s intranet and access services located all
over the world. XML and Web Service technologies provide portable solutions in a heterogeneous Internet envi-
ronment. Still, the data has to be interpreted according to schema definitions and transformed into an appropriate
intra-application representation. The .Net DataSet can represent relational data and exchange it using the XML
syntax. The XML schema used by the DataSet (DiffGram) to map data to XML is proprietary. Using the XML
data as is on another platform requires additional parsing and interpretation. The goal of this project was to re-
implement the .Net DataSet in Java to provide seamless interoperability between .Net Web Services using Data-
Sets and Java Web Service clients/consumers. This paper discusses the need for a Java DataSet and the problems
that arose during the reimplementation. Further, it summarises the Java implementation and the seamless-
ness/transparency of the Java DataSet integration.

Keywords
Toolkit-Interoperability, .Net Web Services, DataSet, XML, Interoperability with JavaJAX-RPC/Axis, Data-
Centric Applications, Porting Components from .Net to Java

1. INTRODUCTION
Almost every application needs to store data. Rela-
tional databases are still the most common solution
for storing information at least for data-centric busi-
ness applications. These applications often directly
manipulate this data and a relational representation is
appropriate or even desired (e.g. to present the data
in a table/grid). There is no need for a complex ob-
ject oriented domain model for such applications
because it will not offer any benefits – a relational
model is sufficient.

Another characteristic of data-centric applications is
the requirement to work with disconnected data. But
working with disconnected data poses the problem of
concurrent data modification. This in turn requires
the application being aware of modifications done on
another’s behalf.

In terms of interoperability, Web Services are cur-

rently the state-of-the-art for building distributed
systems. Web Services typically use SOAP [Soa] as
message protocol, which itself relies on XML. These
technologies allow to access services built on one
platform (e.g. .Net) to be accessed by clients built on
a different platform (e.g. Java). But interoperable
services have to exchange the data passed in mes-
sages in a portable format as well (i.e. XML).

The Microsoft .Net platform easily allows developers
to build interoperable distributed systems, because
technologies such as Web Services and XML are an
integral part of the framework. The framework fur-
ther offers an applicable concept called DataSet. The
DataSet is capable of holding an in-memory repre-
sentation of relational data. It can even be used in
combination with Web Services as data exchange
container because it allows serialisation and deseri-
alisation to and from XML.

But there is a problem when accessing a .Net Web
Service using DataSets from another platform (e.g.
Java), because the platform-dependent DataSet con-
struct is not available. Even though DataSets use
XML as serialisation format, interpreting and recon-
structing the relational model is a complex, error-
prone and time-consuming task.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

This would require building interoperable .Net Web
Services without DataSets. However, DataSets pro-

vide a practical and applicable solution and can help
to solve some reoccurring problems like the concur-
rency issue when working with disconnected data.
Because many .Net Web Services are (and will be)
built using DataSets, there is a need for an easy ac-
cess to these services from another platform.

For the reimplementation of the .Net DataSet, Java 5
has been chosen because the Java Platform has
proven to be a robust environment for distributed
business applications as well as .Net.

Microsoft .Net DataSet
The DataSet is able to hold an in-memory representa-
tion of relational data. It can be compared to a rela-
tional database: it allows the definition of a relational
schema (tables, columns) and the storage of data ac-
cording to this schema. The DataSet even supports
constraints (i.e. unique/foreign key constraints and
allow/deny DBNull values). This makes it an ideal
replacement for a domain model in data-centric ap-
plications.
The DataSet is meant to be passed through different
software layers, from the data access up to the user
interface layer. The .Net framework supports this
approach by offering classes that enable two-way
communication between the DataSet and database.
Further, a DataSet can directly be bound to user in-
terface components supporting data binding (e.g. to a
table/grid).
What makes the DataSet such a usable data container
for disconnected data is its capability to store differ-
ent versions of the data (i.e. original, current and
proposed). It thus implements some kind of unit of
work pattern [Fow02], because it allows a client to
modify data and retransmit the modified DataSet
back to the server once all update operations are
completed by the client. By including the original
data as well, it can easily be determined which data
were already modified by another client in the mean-
time.
When DataSets are used in WebServices, they are
passed as XML payload including both the schema
and the data. The schema is described by an (ex-
tended) XML Schema. The data is represented by an
XML grammar called DiffGram, which supports the
representation of current and original data as well as
error information concerning the data.

2. JAVA DATASET
As described earlier, a platform-independent imple-
mentation of the .Net DataSet is highly desirable.
Actually, there are two different possible ways to
reach this goal. The first alternative would be to port
the DataSet (or the .Net framework in its entirety) to
different native platforms resulting in a number of

several platform-dependent versions. In fact, this
approach is already realised to some extent by the
Mono project [Mon]. The second alternative would
be to port the DataSet once to a platform-
independent framework, such as Sun’s Java. The
latter approach is the ultimate goal of the Java Data-
Set project.

Goal
On a lower level, there are several goals and re-
quirements for a DataSet reimplementation in Java.
Since the project was limited to 16 weeks, the de-
sired functionality had to be adapted to that time re-
striction.
We included everything that is essential to use the
DataSet in a client. This includes the components of
the relational data model (such as tables, rows, col-
umns, constraints and relations), row state handling,
(XML-) serialisation and deserialisation and the
GetChanges method. Other DataSet components,
however, are not vital in client use (such as Data-
Views or DataAdapters).
Since most developers who implement a Java client
using DataSets are familiar with the .Net DataSet, the
syntax should be as near as possible to Microsoft’s
DataSet. Luckily, C# and Java (especially version
5.0) are quite similar except for a few language con-
cepts.
Another requirement was that the installation of the
Java DataSet library should be kept as simple as pos-
sible. Therefore, third-party libraries should be
avoided. The Java DataSet itself uses no additional
libraries. For Web Service access, however, Apache
Axis is used.

Implementation
Before porting a highly complex construct – such as
the .Net DataSet – to another platform, thorough
analysis of the original is indispensable. Unfortu-
nately the (otherwise very good) documentation by
Microsoft is only helpful to some extent because it is
designed to help application developers using the
DataSet. It is not suited, though, to support a devel-
oper intending to dissect the DataSet’s internals and
re-implement it on another platform. As a conse-
quence, the DataSet’s internal mechanics must be
discovered by other means, such as own tests or even
analysis of the IL code (Intermediate Language,
comparable to the ByteCode of Java).
Once these difficulties have been overcome, the im-
plementation of the Java DataSet is quite straight-
forward. The major differences to the original are
due to the divergence of the Java and C# languages
and their frameworks, respectively. One important
difference in usage is the direct invocation of getter
and setter methods in Java. Java properties are

SOAP-Envelope

Body

Operation Name

Parameters

Input Parameter 1:

<soap:Envelope xmlns:soap="..." ...>
 <soap:Body>
 <UpdateAccounts xmlns="...">
 <AccountsParameter>

 <xs:schema id="AccountsDataSet" ...>
 <xs:element name="AccountsDataSet"
 msdata:IsDataSet="true">
 <!-- Accounts DataSet
 schema definition -->
 </xs:element>
 </xs:schema>

 <diffgr:diffgram ...>
 <!-- account data -->
 </diffgr:diffgram>

 </AccountsParameter>
 </UpdateAccounts>
 </soap:Body
</soap:Envelope>

Figure 2. SOAP message transmitting a DataSet
as operation parameter.

merely a naming convention as opposed to being
built into the language itself as in C#.
When it comes to porting software to a different plat-
form there is a regular issue: data types. It is a pecu-
liarity of the Java framework that there are no un-
signed data types. Therefore, one has to implement a
custom mapping mechanism to map the upper half of
the unsigned C# data type’s range to the negative
part of the corresponding Java type, leading to a fair
amount of additional complexity. The simpler ap-
proach used in the Java DataSet is to use the next
bigger type class, allowing the whole unsigned value
range to fit smoothly into the positive half of the Java
type.
Third issues are access modifiers (public, protected,
internal, private). In C#, access scope is based on
assembly structure whereas logical grouping is pro-
vided by namespaces. As a consequence, access
scope and logical grouping are orthogonal. In Java,
both access scope and logical grouping are realised
by packages. In the DataSet, the different classes
collaborate tightly by calling members of other
DataSet library classes, which implies that all classes
must be located in the same package (resulting in a
rather large package).

Outlook
The Java implementation is far from complete. As
mentioned above, there are several components in
the original Microsoft DataSet that are not yet im-
plemented in the Java port. However, for now it is
possible to use the DataSet as a general data (trans-
port) container as well as in Web Service to client
communications.
Additionally, there is a usage scenario of the Java
DataSet in Java GUI applications. Since the DataSet
provides a tabular data structure, it is an ideal table
model providing data values to a JTable. Only an
additional small intermediate layer between DataSet
and JTable would be necessary, resulting in a setup
similar to the combination DataSet/DataGrid in .Net.

3. CONSUMING .NET WEB
SERVICES FROM JAVA
.Net Web Services rely on SOAP1 as XML message
protocol. SOAP is currently wide-accepted and there
are many implementations available. In Java, most
“RPC-oriented” implementations follow the APIs
and conventions defined by JAX-RPC [Jax]. A feasi-
ble SOAP implementation conforming to JAX-RPC
is Axis [Axi]. Using Axis, a Java client can consume
a (.Net) Web Service without problems as long as
standard data types (like xs:string) are used as in-
put/output parameters for Web Service operations.
Using custom data types (like DataSets) poses some
problems: a custom serialisation and deserialisation
has to be implemented and the SOAP implementa-
tion needs to be extended to offer transparent usage.

Passing DataSets in SOAP Messages
A common approach to building a .Net Web Service
that uses DataSets as data exchange containers is to
follow the RPC-oriented invocation style2. For ex-
ample, an operation could involve updating the data-
base to reflect the modified data contained in a Data-
Set. This means that DataSets have to be passed to
the Web Service as operation parameter (or returned
as the operation's return value). Figures 1 and 2 show
an example of an RPC-oriented SOAP Message –
emitted by a .Net Web Service client – containing a

1 Since SOAP Version 1.2, the term SOAP has two expan-

sions – Service Oriented Architecture Protocol and Sim-
ple Object Access Protocol – to reflect the different ways
in which the technology can be interpreted.

2 .Net by default uses “Document” as message and “Lit-
eral” as serialisation format [Rpc]. This paper uses the
term RPC-oriented independently of the underlying mes-
sage format because “Document” is a superset of “RPC”
and it can also be used to mimic an RPC-oriented invoca-
tion style – which in fact is what .Net does by default.

Serialized DataSet Schema
Serialized DataSet Data

Figure 1. SOAP-Envelope of an RPC-oriented
operation call with a DataSet as operation

parameter.

DataSet as operation (input) parameter. The response
sent by a .Net Web Service looks very similar. The
default behavior of a .Net Web Service passing Data-
Sets is to include both the DataSet schema and data,
whereas the data is represented as DiffGram.

The interoperability issue does not primarily lie in
the “generic” message parts being transmitted
because they (should) conform to the W3C SOAP
recommendation but rather in the custom data
included as parameter or return value. Basically, a
SOAP implementation is aware of simple types and
some array encoding styles. Custom types can
sometimes be mapped to classes (e.g. Java Bean
classes) automatically using tools (e.g. JAXB in Java
or the WSDL2Java utility from Axis). But this
approach is often not applicable to complex data
types. The .Net DataSet falls into this category as
both the schema and the data have to be interpreted
and a “simple object representation” would not
suffice. The following section presents the solution
realised by the Java DataSet implementation on top
of Axis.

JAX-RPC/Axis and Transparent Usage
Axis implements the JAX-RPC API and offers the
ability to extend the default Java-to-XML type map-
ping using JAX-RPC interfaces. For custom data
types like the DataSet, specialised serialisers and
deserialisers have to be implemented to enable Axis
to transform the XML representation to a Java object
and vice versa. Thus, the DataSet requires a Data-
SetSerializer and DataSetDeserializer that are aware
of this transformation process. Serialisers and deseri-
alisers will not be instantiated directly by Axis be-
cause it delegates this work to factory classes: Data-
SetSerializerFactory and DataSetDeserializerFactory.

The DataSetDeserializer is event driven – it receives
SAX-Events caught and forwarded from the Axis
infrastructure. Axis calls the appropriate factory to
obtain a deserialiser instance whenever it can find a
registered XML type. Similarly, it calls the appropri-
ate factory to serialise a registered Java type using
the returned serialiser.

A custom type mapping can be registered using the
TypeMappingRegistry. Normally, registering a cus-
tom type mapping involves the following steps:

1. Get a reference to the default type mapping reg-
istry

2. Instantiate serialiser and deserialiser factories
3. Register a new type mapping between the Java

class and XML-Type and specify both factory
instances

The Java code needed to set up such type mapping is
shown in Figure 3. When creating an ASP.Net Web-

Service, the WSDL document defines custom types
for each operation's parameters and/or return value.
This involves registering a custom type mapping for
each DataSet-type parameter and return value.

ServiceFactory sf = ServiceFactory
 .newInstance();
Service webSvc = sf.createService(url,
 qWebServiceName);

TypeMapping tm = webSvc
 .getTypeMappingRegistry()
 .getDefaultTypeMapping();
tm.register(DataSet.class,
 qualifiedXMLTypeName,
 new DataSetSerializerFactory(),
 new DataSetDeserializerFactory());

Figure 3. Registering a custom type mapping
between Java and XML.

Usage Example
By implementing custom serialisers/deserialisers and
registering the appropriate type mappings, the invo-
cation of Web Service operations receiving and re-
turning custom data types is transparent to the caller.
The listing in Figure 4 provides an example of a Web
Service call invocation returning a DataSet instance
to the caller, assuming that the correct type mapping
was registered.

ServiceFactory sf = ServiceFactory
 .newInstance();
Service webSvc = sf.createService(url,
 qWebServiceName);

Call call = webSvc.createCall(qPortName,
 qOperationName);
DataSet dataSet = (DataSet) call
 .invoke(null);

Figure 4. WebService call returning a DataSet.

4. CONCLUSION
Despite its incompleteness, the current Java DataSet
implementation allows the simple and transparent
exchange of data between .Net Web Services and
Web Service consumers in Java. The development of
a Web Service consumer is highly simplified by a
ready-to-use Java DataSet.

5. REFERENCES
[Fow02] Fowler, Patterns of Enterprise Application

Architecture, 2002.
[Soa] W3C SOAP Recommendation,

http://www.w3.org/TR/soap/
[Mon] Mono Project, http://www.mono-project.com
[Axi] Axis Project, http://ws.apache.org/axis/
[Jax] Java API for XML RPC, http://java.sun.com/

xml/jaxrpc/index.jsp
[Rpc] RPC/Literal and Freedom of Choice, MSDN,

/library/en-us/dnwebsrv/html/rpc_literal.asp

	INTRODUCTION
	Microsoft .Net DataSet

	JAVA DATASET
	Goal
	Implementation
	Outlook

	CONSUMING .NET WEB SERVICES FROM JAVA
	Passing DataSets in SOAP Messages
	JAX-RPC/Axis and Transparent Usage
	Usage Example

	CONCLUSION
	REFERENCES

